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Defects in tight-binding lattices generally destroy the onset of Bloch oscillations �BOs� and the periodic
self-imaging of the wave packet due to the lack of an equally spaced Wannier-Stark ladder spectrum. Here it
is shown that localized and extended defects in the lattice can be engineered to be transparent for BOs. Such
lattices are synthesized from the defect-free lattice by the technique of intertwining operators generally em-
ployed in supersymmetric quantum mechanics. The energy spectrum of the synthesized lattices differs from the
Wannier-Stark ladder of the defect-free lattice because of the missing of pairs of resonances in the ladder, thus
ensuring the persistence of BOs.
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I. INTRODUCTION

Bloch oscillations �BOs� represent a fundamental coher-
ent transport phenomenon originally predicted for quantum
particles in periodic potentials driven by an external dc force.
BOs have been observed in a wide variety of quantum and
classical physical systems, including semiconductor
superlattices,1 ultracold atoms,2 Bose-Einstein condensates,3

arrays of evanescently coupled optical waveguides,4,5 photo-
nic superlattices,6 and acoustical superlattices.7 In the ab-
sence of dephasing and scattering processes and for a negli-
gible Zener tunneling, the particle accelerated by the external
force undergoes an oscillatory �rather than a translational�
motion owing to Bragg scattering off the lattice. The period-
icity of the motion is basically ascribed to the transition of
the energy spectrum from a continuous band with delocal-
ized Bloch eigenstates in absence of the external force to a
discrete ladder spectrum with localized Wannier-Stark �WS�
eigenstates when the external force is applied and Zener tun-
neling is negligible. A single-band tight-binding lattice in one
spatial dimension provides the simplest model to describe
the onset of BOs and the formation of WS localized states.8,9

The inclusion of lattice disorder, nonlinearities, inhomogene-
ities or defects has generally a detrimental effect on BOs.
Several authors have investigated the onset of BOs in gener-
alized tight-binding lattice models. Among others, we men-
tion BOs in nonlinear lattices10 and in aperiodic lattices with
long-range correlated disorder,11 BOs with spatially inhomo-
geneous dc fields,12 BOs in quasicrystals,13 BOs for interact-
ing bosons,14 BOs in disordered lattices with interparticle
interaction,15 and BOs in lattices with inhomogeneous inter-
site couplings.16 The introduction of localized or extend de-
fects in the lattice, for either the intersite couplings or the site
energies, is generally expected to destroy the WS ladder
spectrum of the defect-free lattice, and thus the onset of BOs.
In this work it is shown that localized and extended defects
in the lattice can be engineered to be transparent for BOs.
Such lattices are synthesized starting from the defect-free
lattice Hamiltonian by application of the technique of inter-
twining operators, successfully employed in supersymmetric
quantum mechanics17,18 to add or delete energy states of a
given Hamiltonian. In our case, the spectrum of the synthe-
sized lattices differ from the Wannier-Stark ladder of the

defect-free lattice because of the missing of pairs of reso-
nances in the ladder, which ensures the persistence of BOs
and self-imaging of a wave packet. The paper is organized as
follows. In Sec. II, the technique of intertwining operators
for spectral engineering of tight-binding Hamiltonians is pre-
sented. In Sec. III, the technique is then applied to synthesize
lattice models with defects that support BOs. Finally, Sec. IV
outlines the main conclusions.

II. TIGHT-BINDING LATTICE ENGINEERING

Let us consider a one-dimensional tight-binding lattice
described by the Hamiltonian

H = �
n

�n��n − 1��n� + �n��n − 1�� + �
n

Vn�n��n� , �1�

where �n� is a Wannier state localized at site n of the lattice,
�n is the hopping rate between sites �n−1� and �n�, and Vn is
the energy of Wannier state �n� in presence of the external
applied force. To ensure the Hermiticity of H, the hopping
amplitudes �n and site energies Vn must assume real values.
For a defect-free lattice and a homogenous force, the intersite
coupling �n is independent of n ��n=�� and the site energy
Vn increases linearly with n, i.e., Vn=−Fn, where F is the
potential gradient. The corresponding tight-binding Hamil-
tonian will be denoted in the following by H0 and referred to
as the WS Hamiltonian. As is well known, its spectrum is
purely discrete and the allowed energy levels are given by
El= lF, where l=0, �1, �2, . . ..9 Our goal is to synthesize a
lattice Hamiltonian, of the form given by Eq. �1�, with an
energy spectrum which differs from that of the WS Hamil-
tonian H0 because of the missing of some resonances in the
WS ladder spectrum. This spectral engineering problem can
be solved by the technique of intertwining operators gener-
ally employed in supersymmetric quantum mechanics,17

which is also valid for matrix Hamiltonians �see, for in-
stance, Ref. 18 and references therein�. The technique is
briefly described in a rather general manner in this section.

Let us indicate by H1 the tight-binding Hamiltonian de-
fined by Eq. �1� with hopping amplitudes and site energies
given by ��n

�1� ,Vn
�1��, and let us assume that �n→� as n

→ �� and that �Vn� is bounded or diverges with an algebraic
law �Vn�	n as n→ ��; note that such assumptions are sat-

PHYSICAL REVIEW B 81, 195118 �2010�

1098-0121/2010/81�19�/195118�6� ©2010 The American Physical Society195118-1

http://dx.doi.org/10.1103/PhysRevB.81.195118


isfied for the WS Hamiltonian H0. Let us indicate by
�1 ,�2 ,�3 , . . . the point spectrum of H1 and let ���1��
=�n�n

�1��n� be the �proper� eigenfunction of H1 correspond-
ing to the energy �1, i.e.,19

�n
�1��n−1

�1� + �n+1
�1� �n+1

�1� + Vn
�1��n

�1� = �1�n
�1�, �2�

with ��n
�1��→0 for n→ ��. It can be readily shown that,

provided that �n
�1� does not vanish, the following factoriza-

tion for H1 holds

H1 = Q1R1 + �1, �3�

where

Q1 = �
n

�qn
�1��n��n� + q̄n−1

�1� �n − 1��n�� , �4�

R1 = �
n

�rn
�1��n��n� + r̄n+1

�1� �n + 1��n�� �5�

and

rn
�1� = −
�n

�1��n−1
�1�

�n
�1� , �6�

r̄n
�1� = −

�n
�1�

rn
�1� , �7�

qn
�1� = − rn

�1�, �8�

q̄n
�1� = − r̄n+1

�1� . �9�

Let us then construct the new Hamiltonian H2 obtained from
H1 by interchanging the operators R1 and Q1, i.e., let us set

H2 = R1Q1 + �1. �10�

Using Eqs. �4�–�9�, from Eq. �10� it can be readily shown
that H2 describes the Hamiltonian of a tight-binding lattice
�i.e., it is of form �1�� with hopping amplitudes and site en-
ergies ��n

�2� ,Vn
�2�� given by

�n
�2� = �n

�1�rn−1
�1�

rn
�1� , �11�

Vn
�2� = Vn

�1� + �n+1
�1� �n+1

�1�

�n
�1� − �n

�1� �n
�1�

�n−1
�1� . �12�

An interesting property of the new Hamiltonian H2 is that its
energy spectrum is the same as that of H1, apart from the
lack of the discrete energy level E=�1. In fact, let us indicate
by ��E�=�n�n�E��n� a proper �or improper� eigenfunction of
H1 with energy E. Note that, if E belongs to the point spec-
trum of H1, ��n�E��→0 as n→ ��, whereas if E belongs to
the continuous spectrum of H1, ��n�E�� remains bounded as
n→ ��. Let us first assume that E��1. Using factorization
�3� for H1, the eigenvalue equation H1��E�=E��E� reads ex-
plicitly

Q1R1��E� = �E − �1���E� �13�

from which it follows that R1��E��0 since E��1. Applying
the operator R1 to both sides of Eq. �13�, one obtains

R1Q1��̃E� = �E − �1���̃E� , �14�

i.e., H2��̃E�=E��̃E�, where we have set ��̃E�=R1��E� or, ex-
plicitly �see Eq. �5��

�̃n�E� = rn
�1��n�E� + r̄n

�1��n−1�E� . �15�

Therefore, ��̃E� is an eigenfunction of H2 corresponding to
the energy E. Also, from Eqs. �6�, �7�, and �15� and from the
assumed asymptotic behavior of �n

�1� and Vn
�1�, it follows that

��̃E� is a proper �improper� eigenfunction of H2 in the same
way as ��E� is a proper �improper� eigenfunction of H1. In a
similar way, one can show that any eigenvalue E of H2,
belonging to the continuous or to the point spectrum �with
E��1�, is also an eigenvalue of H2. Therefore the continu-
ous and point spectra of H1 and H2 do coincide, apart from
the E=�1 eigenvalue which needs a separate analysis. For
E=�1, the �proper� eigenfunction of H1 is by construction
���1�� �see Eq. �2��, which satisfies the condition R1���1��=0.
On the other hand, from Eq. �10� it follows that the eigen-
value equation H2���=�1��� is satisfied for either ���
= ���1�� or ���= ���2��, where Q1���1��=0 and Q1���2��= ���1��.
The equation Q1���1��=0 reads explicitly

qn
�1��n

�1� + qn
�1��n+1

�1� = 0. �16�

Using the expressions of qn
�1� and q̄n

�1� given by Eqs. �6�–�9�,
the difference Eq. �16� for �n

�1� can be solved in a closed
form, yielding

�n
�1� =

1


�n
�1��n

�1��n−1
�1� . �17�

In view of the asymptotic behavior of �n
�1� and �n as n

→ ��, it turns out that �n
�1� is unbounded as n→ ��, i.e., it

is not an eigenfunction �neither proper not improper� of H2.
Similarly, as �n

�1�→0 as n→ ��, the equation Q1���2��
= ���1�� for ���2�� reduces to Eq. �16� in the asymptotic limit
n→ ��, and thus also �n

�2� is unbounded at n→ ��. There-
fore, none of the two linearly independent solutions ���1��
and ���2�� of the second-order difference equation H2���
=�1��� are bounded, i.e., �1 does not belong neither to the
point spectrum nor to the continuous spectrum of H2.

The factorization method can be iterated to construct new
Hamiltonians H3 ,H4 ,H5 , . . . whose energy spectra differ
from that of H1 owing to the missing of the discrete energy
levels ��1 ,�2� , ��1 ,�2 ,�3� , ��1 ,�2 ,�3 ,�4� , . . . For in-
stance, to construct the Hamiltonian H3, let ��� be the
�proper� eigenfunction of H1 corresponding to the energy E
=�2, and let us set ���2��=R1���. From the previous analysis,
it follows that ���2�� is the �proper� eigenfunction of H2 cor-
responding to the energy E=�2, i.e.,

�n
�2��n−1

�2� + �n+1
�2� �n+1

�2� + Vn
�2��n

�2� = �2�n
�2�. �18�

Let us then construct the new operators R2 and Q2, defined as
in Eqs. �4�–�9� but with �n

�1� and �n
�1� replaced by �n

�2� and
�n

�2�, respectively. The factorization H2=Q2R2+�2 then
holds. Reversing the order of the R and Q operators, one
obtains the new Hamiltonian H3=R2Q2+�2, which possesses
the same energy spectrum of H1, except for the missing of
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the two energy levels E=�1 and E=�2. The hopping ampli-
tudes �n

�3� and site energies Vn
�3� of the lattice corresponding

to the Hamiltonian H3 are given by Eqs. �11� and �12�, with
�n

�1�, rn
�1�, �n

�1�, and Vn
�1� replaced by �n

�2�, rn
�2�, �n

�2�, and Vn
�2�,

respectively. It should be noted that the technique of inter-
twining operators so far described could generate lattice
Hamiltonians with complex-valued hopping rates �n or site
energies Vn; for instance, the hopping amplitudes of H2
might become complex-valued when �n

�1� does not have a
defined sign �see Eq. �6� and �11��. This situation, corre-
sponding to a non-Hermitian lattice with real-valued energy
spectrum, will not be considered in this work. It should be
nevertheless observed that iteration of the intertwining op-
erator technique could finally restore the Hermiticity of the
lattice Hamiltonian, in spite some of the intermediate Hamil-
tonians are not self-adjoint. This is precisely the case of our
interest that will be discussed in the next section.

III. BLOCH OSCILLATIONS

Let us consider the WS Hamiltonian H0, defined by Eq.
�1� with �n=� and Vn=−Fn. As is well known �see, e.g., Ref.
8�, H0 has a purely point spectrum �the WS ladder spectrum�
with energies �see Fig. 1�a��

El = lF �19�

and corresponding localized eigenstates

�u�l�� = �
n

Jn+l����n� , �20�

where �=2� /F and l=0, �1, �2, . . . is the quantum
number.9 Note that the WS state with quantum number l is
localized at around the lattice site n=−l. Owing to the equal
spacing of WS modes, the temporal evolution of any wave
packet is periodic and self-imaging is attained at times mul-
tiples of the Bloch period TB=2� /F. This effect is clearly
visible by observing the breathing or oscillatory modes8 cor-
responding to either an initial single-site or broad-site exci-
tation of the lattice, as shown in Figs. 1�b� and 1�c�. The
introduction of some defects in the lattice, in either the hop-
ping amplitudes �n or site energies Vn, generally breaks the
self-imaging property of the lattice �see, as an example, the
simulations shown in Figs. 1�d� and 1�e��. In this section we
aim to construct tight-binding lattices with defects in which
the self-imaging phenomenon of the WS �defect-free� Hamil-
tonian H0 is maintained. This goal can be achieve by the
application of the intertwining operator technique described
in the previous section assuming as the starting Hamiltonian
H1 the WS Hamiltonian H0, i.e., H1=H0. The main idea is
that any new Hamiltonian H2 ,H3 ,H4 , . . . obtained from H0
by successive application of the intertwining operator tech-
nique has a spectrum which differs from that of H0 by the
missing of some of the WS resonances, and thus a periodic
temporal dynamics of the wave packet is maintained with the
same period TB of the original WS Hamiltonian. As a first
step, let us construct the Hamiltonian H2 by removing from
the spectrum of the WS Hamiltonian H0 one WS resonance,
for instance, the one with energy �1=0 corresponding to the
quantum number l=0 in Eq. �19�. According to Eqs. �11� and
�12� with �n

�1�=�, Vn
�1�=−Fn, and �n

�1�=Jn���, the hopping
amplitudes and site energies of the lattice associated to H2
read explicitly

�n
�2� = �
Jn���Jn−2���

Jn−1
2 ���

, �21�

Vn
�2� = − Fn + �

Jn+1���
Jn���

− �
Jn���

Jn−1���
. �22�

A typical behavior of ��n
�2��2 and 	Vn

�2�
Vn
�2�−Vn

�1�=Vn
�2�

+Fn, as predicted by Eqs. �21� and �22�, is shown in Fig. 2.
Note that �n

�2�→� and 	Vn
�2� settles down to constant values

as n→ ��, so that far from the defect near n=0 the lattice
described by H2 behaves like a defect-free WS lattice. Note
also that, owing to the asymptotic behavior of Bessel func-
tions Jn at large indices, one has 	Vn

�2�→0 as n→+� but
	Vn

�2�→2� /�=F as n→−� �see Fig. 2�b��. Unfortunately,
due to the oscillating behavior of Bessel functions Jn���, the
hopping rates �n

�2� can become complex-valued and the
Hamiltonian H2, correspondingly, ceases to be non-
Hermitian. This is clearly shown in Fig. 2�a�, where ��n

�2��2

becomes negative at a few lattice sites near n=0. This cir-
cumstance indicates that, for such indices, the hopping rates
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FIG. 1. �Color online� �a� Schematic of the energy levels �WS
ladder� of a WS Hamiltonian H0 ��n=� ,Vn=−Fn�; the energy level
spacing is uniform and equal to F. �b� and �c� Periodic breathing
and oscillatory modes in a WS Hamiltonian corresponding to F
=0.2, �=1 and to single-site excitation �cn�0�=
n,0 in �b�� and
broad Gaussian wave packet excitation �cn�0�=exp�−�n−10�2 /64�
in �c�� of the lattice at initial time t=0. Note the periodic self-
imaging of time evolution at multiplies of the BO period TB

=2� /F. �d� and �e�: same as �b� and �c�, but for the WS Hamil-
tonian with a defect in the hopping rate ��n=1 for n�1, �1=1.5�.
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are purely imaginary. In spite of the non-Hermiticity of H2,
its spectrum remains real-valued and BOs with the same pe-
riod TB as that of the WS Hamiltonian are found.20 Fortu-
nately, a second application of the intertwining operator tech-
nique, assuming as a second energy level �2 of H0 one of the
two WS resonances adjacent to �1, i.e., �2= �F �corre-
sponding to the quantum number l= �1 in Eq. �19��, the
Hermiticity of H3 is restored. As an example, Fig. 3 shows
the behaviors of ��n

�3��2 and 	Vn
�3�
Vn

�3�−Vn
�1� corresponding

to �2=−F and for two values of �. Note that, for n→ ��,
�n

�3�→1, and 	Vn
�3� settles down to constant values �	Vn

�3�

→0 for n→+�, 	Vn
�3�→2F for n→−�� so that the synthe-

sized lattice described by H3 behaves like the WS �defect-
free� lattice for site indices far from n=0,1, i.e., far from the
lattice sites of WS localized states removed by the intertwin-
ing operator technique. As F is decreased, i.e., the localiza-
tion length of the WS states is increased �see Eq. �20��, the
localization length of the defect in the lattice is increased, as
one can see by comparing Figs. 3�a� and 3�b� with Figs. 3�c�
and 3�d�. The persistence of BOs in such synthesized lattices,
corresponding to either single-site excitation at t=0 or to a
multiple-site excitation with a broad Gaussian wave packet,
is demonstrated in Figs. 3�e�–3�h�. In the figures, the numeri-
cally computed evolutions of �cn�t��2 versus t, as obtained by
solving the Schrödinger equation for the Hamiltonian H3
with the initial condition cn�0�=
n,0 �for the breathing BO
modes, Figs. 3�e� and 3�g�� and cn�0�=exp�−�n−10�2 /64�
�for the oscillatory BO modes, Figs. 3�f� and 3�h�� are de-
picted for two values of F.

Tight-binding lattices with engineered hopping rates and
energy sites corresponding to the ones shown in Fig. 3 could
be realized using arrays of evanescently coupled optical
waveguides with engineered size and distance, in which the
distances between adjacent waveguides control the hopping
rates �n whereas the channel widths �or refractive index
changes� of the guides set the values of the site energies En
�see, for instance, Refs. 4, 16, and 21 and references therein�.

The technique of intertwining operators can be iterated by
removing additional resonances from the WS ladder of H0.
Extended numerical simulations show that the resulting
Hamiltonians turn out to be Hermitian provided that couples

of adjacent WS resonances are removed, whereas in the other
cases the hopping rates can become imaginary at some lattice
sites. As a general rule, the removal of a new WS resonance
couple at energies E= lF , �l�1�F introduces in the lattice
new defects localized at around the lattice site n= l. For the
Hamiltonian H2s+1 obtained by removing from H0 s couples
of adjacent WS resonances, one has �n

�2s+1�→1 for n→ ��,
	Vn

�2s+1�→0 for n→+�, and 	Vn
�2s+1�→2sF for n→−�. As

an example, Fig. 4 shows the behavior of hopping ampli-
tudes and site energy offsets for a synthesized lattice ob-
tained by removal of the four WS resonances with energies
E=0,−F ,−25F ,−26F. As the number of removed WS reso-
nances �and hence of defects in the lattice� increases, the
behaviors of hopping amplitudes �n and site energies Vn be-
come highly irregular, as shown in the example of Fig. 5.
Here the Hamiltonian H13 is synthesized by successive ap-
plication of the intertwining operator technique that removes
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FIG. 3. �Color online� �a–d� Behavior of the square of hopping
amplitudes ��n

�3��2 and of site energy offset 	Vn
�3�=Vn

�3�+Fn for the
Hamiltonian H3 synthesized from the WS Hamiltonian H0 by re-
moval of the WS resonances �1=0 and �2=−F �see the inset at the
top of the figure�. Parameter values are �=1 and F=0.6 in �a� and
�b�, and �=1 and F=0.2 in �c� and �d�. �e� and �f�: persistent BOs
�breathing and oscillatory modes� in the synthesized lattice corre-
sponding to F=0.6. �g� and �h�: Same as �e� and �f�, but for the
synthesized lattice with F=0.2.
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ues are �=1 and F=0.6.
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from the WS ladder spectrum the 12 resonances
E=42F ,41F ,26F ,25F ,11F ,10F ,0 ,−F ,−11F ,−12F ,−30F ,
−31F. It is remarkable that, in such a rather irregular lattice
with extended defects, BOs still persists and exact self-
imaging is attained, as shown in Figs. 5�c� and 5�d�.

As a final comment, it should be noted that the hopping
rates and site energies of the synthesized lattices described
by the Hermitian Hamiltonians H3 ,H5 ,H7 , . . . depend on �,
i.e., on the amplitude of the forcing F entering in H0. There-
fore, a change of the forcing parameter F in the original WS
Hamiltonian H0 gives different lattice realizations for
H3 ,H5 ,H7 , . . . �see, for instance, Fig. 3�. This means that, as
an additional term Hp=−fn�n� to H0 simply changes the BO
period �just because the external forcing is changed from F
to F+ f�, the addition of Hp=−fn�n� to H3 ,H5 ,H7 , . . . de-
stroys the onset of BOs. This is shown in Fig. 6�a�, where the
temporal evolution of the site occupation probabilities �cn�t��2
is shown for the Hamiltonian H13 of Fig. 5, with an added
perturbation term Hp=−fn�n� for F=0.2 and f =−0.1. For
comparison, the evolution of site occupation probabilities for

the lattice with the WS Hamiltonian H0 perturbed with Hp
=−fn�n� �for the same values of F and f� is depicted in Fig.
6�b�. Therefore, while in a WS ladder Hamiltonian BOs are
observed for any value of forcing F �a change of F corre-
sponds to a change of the BO period�, in the synthesized
lattices H3 ,H5 ,H7 , . . . a change of the forcing is detrimental
for the onset of BOs. Yet, it is remarkable that at a fixed
forcing strength BOs can be observed in tight-binding lat-
tices with defects, and even in greatly irregular lattices �like
the one shown in Fig. 5�.

IV. CONCLUSIONS

In conclusion, in this work it has been shown that single
and multiple defects in a tight-binding Wannier-Stark lattice
can be introduced such that BOs and the self-imaging prop-
erty of the WS lattice are not destroyed. Such lattices are
synthesized from the defect-free lattice by the technique of
intertwining operators generally employed in supersymmet-
ric quantum mechanics to engineer the spectrum of Hermit-
ian Hamiltonians. The energy spectrum of the synthesized
lattices differs from the Wannier-Stark ladder of the defect-
free lattice because of the missing of pairs of resonances in
the ladder, thus ensuring the persistence of BOs. It is envis-
aged that the lattice engineering technique proposed in this
work could be extended to other coherent dynamical re-
gimes, such as dynamic localization in presence of an ac
�time-periodic� force.22 It is also envisaged that the possibil-
ity to realize non-Hermitian tight-binding lattices with real-
valued energies-mentioned in this work-would deserve fur-
ther investigation and could stimulate studies in the
framework of the rapidly developing field of non-Hermitian
quantum mechanics.20,23
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